Deformations of Coisotropic Submanifolds and Strong Homotopy Lie Algebroids
نویسنده
چکیده
In this paper, we study deformations of coisotropic submanifolds in a symplectic manifold. First we derive the equation that governs C∞ deformations of coisotropic submanifolds and define the corresponding C∞-moduli space of coisotropic submanifolds modulo the Hamiltonian isotopies. This is a non-commutative and non-linear generalization of the well-known description of the local deformation space of Lagrangian submanifolds as the set of graphs of closed one forms in the Darboux-Weinstein chart of a given Lagrangian submanifold. We then introduce the notion of strong homotopy Lie algebroid (or L∞-algebroid) and associate a canonical isomorphism class of strong homotopy Lie algebroids to each pre-symplectic manifold (Y, ω) and identify the formal deformation space of coisotropic embeddings into a symplectic manifold in terms of this strong homotopy Lie algebroid. The formal moduli space then is provided by the gauge equivalence classes of solutions of a version of the Maurer-Cartan equation (or the master equation) of the strong homotopy Lie algebroid, and plays the role of the classical part of the moduli space of quantum deformation space of coisotropic A-branes. We provide a criterion for the unobstructedness of the deformation problem and analyze a family of examples that illustrates that this deformation problem is obstructed in general and heavily depends on the geometry and dynamics of the null foliation.
منابع مشابه
On the Integration of Poisson Manifolds, Lie Algebroids, and Coisotropic Submanifolds
In recent years, methods for the integration of Poisson manifolds and of Lie algebroids have been proposed, the latter being usually presented as a generalization of the former. In this Letter it is shown that the latter method is actually related to (and may be derived from) a particular case of the former if one regards dual of Lie algebroids as special Poisson manifolds. The core of the proo...
متن کاملBfv-complex and Higher Homotopy Structures
We present an alternative approach to induced higher homotopy structures constructed by the ’basic perturbation lemma’. This approach is motivated by physical considerations and makes use of operads and their representations. As an application we prove that the BFV-complex controls the formal deformations of coisotropic submanifolds. This is established by identifying the P∞-algebra structure o...
متن کاملBvf-complex and Higher Homotopy Structures
We present an alternative approach to higher derived homotopy structures induced by the ’basic perturbation lemma’. This approach is motivated by physical considerations and makes use of operads and their representations. As an application we prove that the BVF-complex controls the formal deformations of coisotropic submanifolds – at least locally or under assumptions on the topology of the coi...
متن کاملRepresentations up to homotopy of Lie algebroids
We introduce and study the notion of representation up to homotopy of a Lie algebroid, paying special attention to examples. We use representations up to homotopy to define the adjoint representation of a Lie algebroid and show that the resulting cohomology controls the deformations of the structure. The Weil algebra of a Lie algebroid is defined and shown to coincide with Kalkman’s BRST model ...
متن کاملOn Contact and Symplectic Lie Algeroids
In this paper, we will study compatible triples on Lie algebroids. Using a suitable decomposition for a Lie algebroid, we construct an integrable generalized distribution on the base manifold. As a result, the symplectic form on the Lie algebroid induces a symplectic form on each integral submanifold of the distribution. The induced Poisson structure on the base manifold can be represented by m...
متن کامل